Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.454
Filtrar
1.
J Agric Food Chem ; 72(14): 7774-7783, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563445

RESUMO

Pathogenic microorganisms can impact the behavior and physiology of herbivores by direct or indirect means. This study demonstrated that yellow peach moth Conogethes punctiferalis larvae feeding on Penicillium-infected apples exhibited significantly longer body length and weight parameters compared to the control group. The sequencing of gut 16S rRNA showed a significant increase in the diversity and abundance of bacteria in the larvae feeding on Penicillium-infected apples. Additionally, transcriptomic sequencing of the larval gut indicated significant upregulation of genes related to digestion and cuticle formation after consuming Penicillium-infected apples. Furthermore, enzyme activity assays revealed notable changes in the trypsin and lipase activity. Consequently, these alterations in gut microbiota structure, diversity, and gene expression levels may underlie the observed growth and developmental variations in C. punctiferalis larvae mediated by pathogenic microorganisms. This study holds theoretical significance for a deeper understanding of the tripartite interaction among microorganisms, insects, and plants as well as for the development of novel pest control measures based on gut microbiota.


Assuntos
Malus , Mariposas , Animais , Malus/genética , RNA Ribossômico 16S/genética , Larva , Bactérias/genética , Expressão Gênica
2.
BMC Plant Biol ; 24(1): 240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570817

RESUMO

Apple is an important fruit crop that is always in demand due to its commercial and nutraceutical value. Also, the requirement for quality planting material for this fruit crop for new plantations is increasing continuously. In-vitro propagation is an alternative approach, which may help to produce genetically identical high grade planting material. In this study, for the first time, an efficient and reproducible propagation protocol has been established for apple root stock MM 104 via axillary bud. Culturing axillary buds on Murashige and Skoog apple rootstock (MM 104) resulted in better in-vitro propagation. (MS) basal medium supplemented with 3.0% (w/v) sucrose and 0.8% (w/v) agar. The axillary buds were established in MS basal medium with BA (5.0 µM), NAA (1.0 µM) and further used to establish invitro propagation protocol. Plant Growth Regulators (PGRs), BA (1.0 µM) in combination with NAA (1.0 µM) was found most efficient for shoot multiplication (100%) and produced 9.8 shoots/explants with an average shoot length of (2.4 ± cm). All the shoots produced roots in 0.1 µM IBA with a 5-day dark period. Acclimatization of in-vitro raised plantlets was obtained with vermiculite: perlite: sand: soil (2:2:1:1) resulting in 76% survival under field conditions. The study showed that the use of axillary bud is efficient for multiple-shoot production of apple rootstock (MM 104). This is the first comprehensive report on in-vitro growth of apple root stock MM 104 with an assessment of genetic stability using DNA fingerprinting profiles based on Inter Simple Sequence Repeats (ISSR) and Start Codon Targeted (SCoT). The genetic stability of in-vitro-produced plants, as determined by SCoT and ISSR primers, demonstrated genetic closeness to the mother plant.


Assuntos
Malus , Malus/genética , Códon de Iniciação , Reguladores de Crescimento de Plantas , Frutas , Repetições de Microssatélites
3.
Pestic Biochem Physiol ; 200: 105813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582585

RESUMO

Apple Valsa canker (AVC), caused by Valsa mali, is the most serious branch disease for apples in East Asia. Biocontrol constitutes a desirable alternative strategy to alleviate the problems of orchard environment pollution and pathogen resistance risk. It is particularly important to explore efficient biocontrol microorganism resources to develop new biocontrol technologies and products. In this study, an endophytic fungus, which results in the specific inhibition of the growth of V. mali, was isolated from the twig tissue of Malus micromalus with a good tolerance to AVC. The fungus was identified as Alternaria alternata, based on morphological observations and phylogenetic analysis, and was named Aa-Lcht. Aa-Lcht showed a strong preventive effect against AVC, as determined with an in vitro twig evaluation method. When V. mali was inhibited by Aa-Lcht, according to morphological and cytological observations, the hyphae was deformed and it had more branches, a degradation in protoplasm, breakages in cell walls, and then finally died completely due to mycelium cells. Transcriptome analysis indicated that Aa-Lcht could suppress the growth of V. mali by inhibiting the activity of various hydrolases, destroying carbohydrate metabolic processes, and damaging the pathogen membrane system. It was further demonstrated that Aa-Lcht could colonize apple twig tissues without damaging the tissue's integrity. More importantly, Aa-Lcht could also stimulate the up-regulated expression of defense-related genes in apples together with the accumulation of reactive oxygen species and callose deposition in apple leaf cells. Summarizing the above, one endophytic biocontrol resource was isolated, and it can colonize apple twig tissue and play a biocontrol role through both pathogen inhibition and resistance inducement.


Assuntos
Alternaria , Malus , Malus/microbiologia , Filogenia , Perfilação da Expressão Gênica , Hifas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
4.
Sci Rep ; 14(1): 8485, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605100

RESUMO

This research investigates the impact of storage conditions on the quality and preservation of 'Shalimar' apples, a relatively new cultivar known for its resistance to apple scab and powdery mildew. The study explores the efficacy of different storage techniques such as regular atmosphere (RA), controlled atmosphere (CA), and dynamic controlled atmosphere with CO2 Monitoring (DCA-CD), as well as the integration of 1-methylcyclopropene (1-MCP) at different storage temperatures (1 °C and 3 °C). Various fruit quality parameters were monitored under different storage conditions, including firmness, titratable acidity, total soluble solids, background color, respiration, ethylene production, and volatile compounds. The results indicate that the controlled atmosphere (CA) at 1 °C emerges as an efficient method for long-term storage. However, it is noted that CA storage may impact the apple aroma, emphasizing the need for a balance between preservation and consumer acceptability. On the other hand, DCA-CD at variable temperatures (approximately 2.5 °C) offers a promising approach for maintaining fruit quality and a higher concentration of volatile compounds. Integrating 1-MCP enhances firmness, but its impact varies across storage conditions. Principal component analysis (PCA) provides insights into the relationships between storage conditions, fruit quality, and volatile compounds. This study contributes valuable insights into optimizing storage strategies for 'Shalimar' apples, addressing sustainability and quality preservation in apple production.


Assuntos
Malus , Frutas , Ciclopropanos/farmacologia , Etilenos
5.
Mol Plant Pathol ; 25(4): e13454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619507

RESUMO

Apple Glomerella leaf spot (GLS) is an emerging fungal disease caused by Colletotrichum fructicola and other Colletotrichum species. These species are polyphyletic and it is currently unknown how these pathogens convergently evolved to infect apple. We generated chromosome-level genome assemblies of a GLS-adapted isolate and a non-adapted isolate in C. fructicola using long-read sequencing. Additionally, we resequenced 17 C. fructicola and C. aenigma isolates varying in GLS pathogenicity using short-read sequencing. Genome comparisons revealed a conserved bipartite genome architecture involving minichromosomes (accessory chromosomes) shared by C. fructicola and other closely related species within the C. gloeosporioides species complex. Moreover, two repeat-rich genomic regions (1.61 Mb in total) were specifically conserved among GLS-pathogenic isolates in C. fructicola and C. aenigma. Single-gene deletion of 10 accessory genes within the GLS-specific regions of C. fructicola identified three that were essential for GLS pathogenicity. These genes encoded a putative non-ribosomal peptide synthetase, a flavin-binding monooxygenase and a small protein with unknown function. These results highlight the crucial role accessory genes play in the evolution of Colletotrichum pathogenicity and imply the significance of an unidentified secondary metabolite in GLS pathogenesis.


Assuntos
Colletotrichum , Fabaceae , Malus , Phyllachorales , Colletotrichum/genética , Virulência/genética , Genômica
6.
Mol Plant Pathol ; 25(4): e13457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619873

RESUMO

Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple (Malus domestica) quality and yield. In this study, we found that the transcription factor MdWRKY71 was significantly induced by C. fructicola infection in the GLS-susceptible apple cultivar Royal Gala. The overexpression of MdWRKY71 in apple leaves resulted in increased susceptibility to C. fructicola, whereas RNA interference of MdWRKY71 in leaves showed the opposite phenotypes. These findings suggest that MdWRKY71 functions as a susceptibility factor for the apple-C. fructicola interaction. Furthermore, MdWRKY71 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (DLO1) and promoted its expression, resulting in a reduced SA level. The sensitivity of 35S:MdWRKY71 leaves to C. fructicola can be effectively alleviated by knocking down MdDLO1 expression, confirming the critical role of MdWRKY71-mediated SA degradation via regulating MdDLO1 expression in GLS susceptibility. In summary, we identified a GLS susceptibility factor, MdWRKY71, that targets the apple SA degradation pathway to promote fungal infection.


Assuntos
Fabaceae , Malus , Phyllachorales , Malus/genética , Fenótipo , Ácido Salicílico
7.
Sci Data ; 11(1): 390, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627414

RESUMO

Apple is one of the most economically important and popular temperate fruit trees. The domestication of apple has resulted in substantial phenotypic differences, particularly between wild and cultivated varieties. However, the relationship between gene expression and phenotypic variations in apple remains poorly understood. Here, we present a comprehensive dataset featuring five distinct apple varieties, including two wild varieties and three representative cultivated varieties. The dataset comprises of both phenomics data, encompassing twelve fruit quality-related traits continuously measured over two years, and transcriptomic data obtained at different developmental stages with three biological replicates. We performed basic quality control process, gene expression normalization and differential gene expression analysis to demonstrate the utility and reliability of the dataset. Our findings indicate that gene expression strongly related with phenotypic variations in apple. This dataset serves as a valuable resource, encompassing phenomics and transcriptomic data in multiple formats, thereby facilitating further exploration of the relationships between gene expression and phenotypic traits in apple.


Assuntos
Perfilação da Expressão Gênica , Malus , Fenômica , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Fenótipo
8.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569959

RESUMO

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Assuntos
Produtos Agrícolas , Monitoramento Ambiental , Praguicidas , Polinização , Animais , Abelhas/fisiologia , Praguicidas/análise , Pólen , Malus , Exposição Ambiental/estatística & dados numéricos
9.
Planta ; 259(6): 125, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634979

RESUMO

MAIN CONCLUSION: Overexpression of MdLBD3 in Arabidopsis reduced sensitivity to salt and drought stresses and was instrumental in promoting early flowering. Salt and drought stresses have serious effects on plant growth. LATERAL ORGAN BOUNDARY DOMAIN (LBD) proteins are a plant-specific transcription factors (TFs) family and play important roles in plants in resisting to abiotic stress. However, about the function of LBDs in apple and other woody plants is little known. In this study, protein sequences of the LBD family TFs in apples were identified which contained conserved LOB domains. The qRT-PCR analysis showed that the MdLBD3 gene was widely expressed in various tissues and organs. The subcellular localization assay showed that the MdLBD3 protein was localized in the nucleus. Ectopic expression of MdLBD3 in Arabidopsis positively regulated its salt and drought resistance, and promoted early flowering. Collectively, these results showed that MdLBD3 improved the abiotic stress resistance, plant growth and development. Overall, this study provided a new gene for breeding that can increase the abiotic stress tolerance in apple.


Assuntos
Arabidopsis , Malus , Fatores de Transcrição , Secas , Melhoramento Vegetal , Estresse Salino , Clonagem Molecular
10.
Open Vet J ; 14(1): 274-283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633164

RESUMO

Background: Salmonella-related foodborne illnesses are a significant public health concern. Naturally, antibacterial food components have been shown to limit microbial growth proliferation with various degrees of efficacy. Aims: To examine the occurrence, microbial load, and effect of apple vinegar on Salmonella serovars in beef and beef products. Methods: 150 beef and beef products were collected between March and May 2022. Total viable count (TVC), Enterobacteriaceae count (ENT), isolation and identification of Salmonella, and their virulence factors detection by multiplex PCR were determined, and an experimental study of the effect of natural apple vinegar marination on Salmonella spp. Results: TVC was higher in meatballs (3.32 × 106 ± 1.07 × 106) while beef burgers (4.22 × 103 ± 0.71 × 103) had the highest ENT. Concerning the prevalence of Salmonella spp., meatball (46.7%) and beef burger (25.3%) samples were the highest contamination rate. The common serovars detected were Salmonella typhimurium (6%), Salmonella enteritidis (6%), and Salmonella infantis (4%). Based on the results of PCR, 12, 11, and 11 out of 18 samples of Salmonella isolates possess hila, stn, and invA genes. By immersing the inoculated steak meat in apple vinegar at different concentrations (50%, 70%, and 100%), the initial populations of the Salmonella strains after 12 hours were reduced to 0.38 × 102 ± 0.05 × 102 log CFU/ml; however, after 48 hours become the most reduction (0.31 × 102 ± 0.07 × 102 log CFU/ml) at a concentration of 100% apple vinegar. An enhancement in the sensory attributes was noted across all concentrations. Conclusion: The consumed beef and beef products are contaminated with pathogenic bacteria such as Salmonella spp. Marinades made using apple vinegar concentrations of 50%, 75%, and 100% effectively minimized the prevalence of artificially inoculated Salmonella and extended the shelf life of preserved refrigerated beef products to 48 hours.


Assuntos
Ácido Acético , Malus , Bovinos , Animais , Microbiologia de Alimentos , Contagem de Colônia Microbiana/veterinária , Antibacterianos , Salmonella typhimurium/genética
11.
Open Vet J ; 14(1): 186-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633173

RESUMO

Background: Bacillus cereus (B. cereus) biofilm is grown not only on medical devices but also on different substrata and is considered a potential hazard in the food industry. Quorum sensing plays a serious role in the synthesis of biofilm with its surrounding extracellular matrix enabling irreversible connection of the bacteria. Aim: The goal of the current investigation was to ascertain the prevalence, patterns of antimicrobial resistance, and capacity for B. cereus biofilm formation in meat and meat products in Egypt. Methods: In all, 150 meat and meat product samples were used in this study. For additional bacteriological analysis, the samples were moved to the Bacteriology Laboratory. Thereafter, the antimicrobial, antiquorum sensing, and antibiofilm potential of apple cider vinegar (ACV) on B. cereus were evaluated. Results: Out of 150 samples, 34 (22.67%) tested positive for B. cereus. According to tests for antimicrobial susceptibility, every B. cereus isolates tested positive for colistin and ampicillin but negative for ciprofloxacin and imipenem. The ability to form biofilms was present in all 12 multidrug-resistant B. cereus isolates (n = 12); of these, 6 (50%), 3 (25%), and 3 (25%) isolates were weak, moderate, and strong biofilm producers, respectively. It is noteworthy that the ACV demonstrated significant inhibitory effects on B. cereus isolates, with minimum inhibitory concentrations varying between 2 and 8 µg/ml. Furthermore, after exposing biofilm-producing B. cereus isolates to the minimum biofilm inhibitory concentrations 50 of 4 µg/ml, it demonstrated good antibiofilm activity (>50% reduction of biofilm formation). Strong biofilm producers had down-regulated biofilm genes (tasA and sipW) and their regulator (plcR) compared to the control group, according to reverse transcriptase quantitative polymerase chain reaction analysis. Conclusion: Our study is the first report, that spotlights the ACV activity against B. cereus biofilm and its consequence as a strong antibacterial and antibiofilm agent in the food industry and human health risk.


Assuntos
Anti-Infecciosos , Malus , Humanos , Animais , Bacillus cereus/genética , Ácido Acético/farmacologia , Carne/microbiologia , Anti-Infecciosos/farmacologia , Biofilmes
12.
Physiol Plant ; 176(2): e14278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644530

RESUMO

Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.


Assuntos
Metilação de DNA , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metilação de DNA/genética , Epigênese Genética , Reguladores de Crescimento de Plantas/metabolismo , Epigenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Physiol Plant ; 176(2): e14288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644531

RESUMO

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP20 , Malus , Filogenia , Doenças das Plantas , Proteínas de Plantas , Malus/genética , Malus/microbiologia , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Ascomicetos/fisiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Família Multigênica , Resistência à Doença/genética , Antocianinas/metabolismo
14.
Food Microbiol ; 121: 104496, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637067

RESUMO

Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.


Assuntos
Hypocreales , Malus , Malus/microbiologia , Frutas/microbiologia , Virulência/genética
15.
Planta ; 259(4): 86, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453695

RESUMO

MAIN CONCLUSION: MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.


Assuntos
Ascomicetos , Malus , Malus/metabolismo , Resistência à Doença/genética , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia
17.
BMC Plant Biol ; 24(1): 219, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532379

RESUMO

BACKGROUND: Drought is considered the main environmental factor restricting apple production and thus the development of the apple industry. Rootstocks play an important role in enhancing the drought tolerance of apple plants. Studies of the physiology have demonstrated that 'ZC9-3' is a strong drought-resistant rootstock, whereas 'Jizhen-2' is a weak drought-resistant rootstock. However, the metabolites in these two apple rootstock varieties that respond to drought stress have not yet been characterized, and the molecular mechanisms underlying their responses to drought stress remain unclear. RESULTS: In this study, the physiological and molecular mechanisms underlying differences in the drought resistance of 'Jizhen-2' (drought-sensitive) and 'ZC9-3' (drought-resistant) apple rootstocks were explored. Under drought stress, the relative water content of the leaves was maintained at higher levels in 'ZC9-3' than in 'Jizhen-2', and the photosynthetic, antioxidant, and osmoregulatory capacities of 'ZC9-3' were stronger than those of 'Jizhen-2'. Metabolome analysis revealed a total of 95 and 156 differentially accumulated metabolites in 'Jizhen-2' and 'ZC9-3' under drought stress, respectively. The up-regulated metabolites in the two cultivars were mainly amino acids and derivatives. Transcriptome analysis revealed that there were more differentially expressed genes and transcription factors in 'ZC9-3' than in 'Jizhen-2' throughout the drought treatment. Metabolomic and transcriptomic analysis revealed that amino acid biosynthesis pathways play key roles in mediating drought resistance in apple rootstocks. A total of 13 metabolites, including L-α-aminoadipate, L-homoserine, L-threonine, L-isoleucine, L-valine, L-leucine, (2S)-2-isopropylmalate, anthranilate, L-tryptophan, L-phenylalanine, L-tyrosine, L-glutamate, and L-proline, play an important role in the difference in drought resistance between 'ZC9-3' and 'Jizhen-2'. In addition, 13 genes encoding O-acetylserine-(thiol)-lyase, S-adenosylmethionine synthetase, ketol-acid isomeroreductase, dihydroxyacid dehydratase, isopropylmalate isomerase, branched-chain aminotransferase, pyruvate kinase, 3-dehydroquinate dehydratase/shikimate 5-dehydrogenase, N-acetylglutamate-5-P-reductase, and pyrroline-5-carboxylate synthetase positively regulate the response of 'ZC9-3' to drought stress. CONCLUSIONS: This study enhances our understanding of the response of apple rootstocks to drought stress at the physiological, metabolic, and transcriptional levels and provides key insights that will aid the cultivation of drought-resistant apple rootstock cultivars. Especially, it identifies key metabolites and genes underlying the drought resistance of apple rootstocks.


Assuntos
Malus , Malus/genética , Secas , Perfilação da Expressão Gênica , Metabolômica , Metaboloma , Aminoácidos , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
18.
Food Chem ; 446: 138869, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428075

RESUMO

Pectin, a complex polysaccharide found in plant cell walls, plays a crucial role in various industries due to its functional properties. The diluted alkali-soluble pectin (DASP) fractions that result from the stepwise extraction of apples and carrots were studied to evaluate their structural and rheological properties. Homogalacturonan and rhamnogalacturonan I, in different proportions, were the main pectin domains that composed DASP from both materials. Atomic force microscopy revealed that the molecules of apple DASP were longer and more branched. A persistence length greater than 40 nm indicated that the pectin molecules deposited on mica behaved as stiff molecules. The weight-averaged molar mass was similar for both samples. Intrinsic viscosity values of 194.91 mL·g-1 and 186.79 mL·g-1 were obtained for apple and carrot DASP, respectively. Rheological measurements showed greater structural strength for apple-extracted pectin, whereas carrot pectin was characterized by a higher linear viscoelasticity limit. This comparison showed that the pectin fractions extracted by diluted alkali are structurally different and have different rheological properties depending on their botanical origin. The acquired insights can enhance the customized use of pectin residue and support further investigations in industries relying on pectin applications.


Assuntos
Daucus carota , Malus , Malus/química , Álcalis , Pectinas/química , Polissacarídeos
19.
Food Chem ; 446: 138846, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460279

RESUMO

The unreasonable use of organophosphorus pesticides leads to excessive pesticide residues in food, seriously threatening public health, and the potential of surface-enhanced Raman spectroscopy (SERS) technology, incorporating a metal-organic framework, is substantial for the rapid detection of trace pesticide residues. Here, a novel Fe3O4@NH2-MIL-101(Fe)@Ag (FNMA) SERS nanosensor was developed. Results indicated that the FNMA had a high enhancement factor of 1.53 × 108, a low limit of detection (LOD) of 4.55 × 10-12 M, and a relative standard deviation of 7.73 % for 4-nitrothiophenol, demonstrating its good SERS sensitivity and uniformity, and also possessed good storage stability for one month. In quantifying fenthion and methyl parathion in standard solutions and apple juice in the range of 0.05/0.02-20 mg/L, it showed LODs of 3.02 × 10-3 mg/L and 1.43 × 10-3 mg/L, and 0.0407 and 0.0075 mg/L, respectively, demonstrating potentials in ultrasensitive trace detection of pesticides in food.


Assuntos
Malus , Nanopartículas Metálicas , Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Malus/química , Resíduos de Praguicidas/análise , Compostos Organofosforados/análise , Análise Espectral Raman/métodos , Frutas/química , Fenômenos Magnéticos , Nanopartículas Metálicas/química
20.
Food Chem ; 447: 139005, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507948

RESUMO

Hydrogen sulfide (H2S) is known to effectively inhibit the browning of fresh-cut apples, but the mechanism at a metabolic level remains unclear. Herein, non-targeted metabolomics was used to analyze metabolic changes in surface and internal tissues of fresh-cut apple after H2S treatment. The results showed that prenol lipids were the most up-accumulated differential metabolites in both surface and inner tissue of fresh-cut apple during browning process, which significantly down-accumulated by H2S treatment. H2S treatment reduced the consumption of amino acid in surface tissue. Regarding inner tissue, H2S activated defense response through accumulation of lysophospholipid signaling and induced the biosynthesis of phenolic compounds. We therefore propose that H2S inhibited the surface browning of fresh-cut apple by reducing the accumulation of prenol lipids, directly delaying amino acid consumption in surface tissue and indirectly regulating defense response in inner tissue, which provides fundamental insights into browning inhibition mechanisms by H2S.


Assuntos
Hemiterpenos , Sulfeto de Hidrogênio , Malus , Pentanóis , Malus/química , Aminoácidos/farmacologia , Lipídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...